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Relaxation time hierarchy in a two-component quasiparticle gas

Alexander V. Zhukov
Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

~Received 24 April 2002; published 30 October 2002!

A quasiparticle description of various condensed media is a very popular tool in the study of their transport
and thermodynamic properties. I present here a microscopic theory for the description of diffusion processes in
a two-component gas of quasiparticles with arbitrary dispersion law and statistics. In particular, I analyze the
role of interaction within each subsystem~i.e., between identical quasiparticles! in relaxation of the whole
system. The approach for solving such kinetic problems allows one to study the most important limiting cases
and to clarify their physical sense. Classical results for diffusion coefficients of light particles in a massive gas
~Lorentz model! and of massive particles in a light gas~Rayleigh model! are obtained directly from the general
solution without using artificial approaches, as was done earlier. This provides a possibility to generalize these
popular models on quasiparticle systems.

DOI: 10.1103/PhysRevE.66.041208 PACS number~s!: 63.20.2e, 66.10.Cb, 66.30.2h, 66.90.1r
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I. INTRODUCTION

It is well known that a variety of properties of some co
densed media can be described by interaction process
quasiparticle gases. These are, say, transverse and long
nal phonons in solids, phonons and magnons in magnetic
ordered materials, phonons and rotons in superfluid heli
conduction electrons and holes in semiconductors, etc. A
rule, to study the dissipative properties of such systems
vestigators use either the classical kinetic theory in its s
plest form or some semi-intuitive models, which lead som
times to quite ambiguous results in the case of quasipar
systems. Here I present a theory of diffusion processe
two-component quasiparticle systems, which, in genera
independent of particular quasiparticles statistics and dis
sion law. Let me first briefly review the present state of t
classical kinetic theory and analyze its limitations in the d
scription of quantum quasiparticle systems of conden
media.

The kinetic theory of gases in modern understanding
attributed to the pioneering work by Maxwell@1#, in which
he has proved the law for distribution of velocities of mo
ecules in a homogeneous equilibrium gas~the so-called
Maxwell velocity distribution! and the law of equidistribu-
tion of average energy of molecules in a mixture of gas
His results were updated and improved in further works
voted to the theory of inhomogeneous gases~for a history of
the problem see Ref.@2#!. However, as a basis of all math
ematical methods of the modern kinetic theory it is necess
to consider the basic works by Boltzmann@3#, in which the
H theorem was proved and the classical Boltzmann equa
was introduced.

The Boltzmann equation is an integro-differential equ
tion describing the collisional behavior of a rarefied gas. U
til now it remains a basis of the kinetic theory of gases a
appears to be very fruitful not only for a research of class
gases, which Boltzmann himself kept in mind, but—with
appropriate generalization—for the study of electron tra
port in solids and plasma, transport of neutrons in nucl
reactors, phonon and roton transport in superfluid liqu
and transport of a radiation in atmospheres of stars and p
1063-651X/2002/66~4!/041208~10!/$20.00 66 0412
in
di-

lly
,
a

n-
-
-
le
in
is
r-

e
-
d

is

s.
-

ry

n

-
-
d
l

-
r
,
n-

ets. For the past 130 years these researches have led to
nificant achievements both in the new areas, and in old o
@4#.

Generally, a kinetic equation of the Boltzmann type~the
equation describing the evolution of a single-particle dis
bution function in an phase space! represents the integro
differential equation, where remarkable property is the n
linearity of the collision term. Just this fact makes a
obstacle in the construction of methods for solving the
netic equation. The monographies@2,5# are devoted to a de
tailed exposition of such methods in the case of classical
systems.

In the majority of experimental problems there is no n
cessity to use the detailed microscopic description of
systems at the level of distribution functions. As a rule,
vestigation of physical processes in macroscopic system
carried out at the less detailed level of hydrodynamic va
ables. Since these variables are determined through the
ments of a distribution function, then, as a rule, a detai
study of the main moments of the distribution function a
propriate to collisions invariants is required, but not the d
tribution function itself. Thus, the connection between t
kinetic theory and hydrodynamics appears to be one of
main problems. In particular, one of the main aspects of
problem is the determination of transport coefficients, su
as the diffusion coefficient and viscosity~first and second!,
thermal conductivity appeared in equations of hydrodyna
ics of a viscous liquid@6#.

In spite of the long history of physical kinetics, today w
have a rather small number of approaches to a solution of
kinetic equations. All these approaches and methods th
were formed depending on concrete problems, on wh
were directed. Most general methods of research of none
librium state of classical and quantum gases were directe
demonstrating a mathematical resolvability~or insolubility!
of certain basic problems in principle, rather than on co
struction of serviceable theories, suitable for deriving a so
tion of concrete physical problems.

The classical methods of deriving a solution of the kine
equations allow one to derive the kinetic coefficients as
ries expansions on an infinite set of orthogonal polynomia
©2002 The American Physical Society08-1
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However, it appeared to be very difficult to use these cla
cal results for numerical calculation and analysis of phys
processes in real systems. This is caused by impossibilit
selection of the contribution from different types of intera
tions to various kinetic coefficients, while many physic
systems behave qualitatively differently for different ra
between the speed of a relaxation inside each subsystem
between subsystems.

In classical gases with pointlike interaction, this proble
is less important because the speed of relaxation inside
systems is unambiguously determined by their mass and
centration. In the quantum case, when we talk about qu
particles, the situation becomes more complicated.
mechanism of interaction between quasiparticles is indep
dent of simple macroscopic parameters. For example
some cases such notation as mass cannot be well defin
all ~say, what is the mass of a phonon?!.

The mathematical theory of transport processes is m
advanced for mixtures of classical gases, the evolution
which is described by a set of Boltzmann equations. A ba
of classical methods for solution of the Boltzmann equat
in the case of a one-component gas is the formal expan
of distribution function in power series of some parametes
in the form f 5 f (0)1s f (1)1s2f (2)1•••, so that function
f (0) corresponds to statistical equilibrium. In this case para
eters is some scale factor for density, the physical sense
which can be different depending on a particular problem.
a rule, this parameter is formally considered to be small
that the solution of the kinetic equation represents a prob
of singular perturbation@7#. The most successful methods
solution of the kinetic equation, such as the Hilbert meth
and the Chapman-Enskog method@2,5#, are based on this
principle. In spite of the success of the Chapman-Ens
method in the description of connection between the kin
theory and the equations of hydrodynamics~the Navier-
Stokes equations appear already in the first order in par
eters), the explicit expressions for kinetic coefficients ha
a rather complicated form. The main defect of these exp
sions is that already in the first order in parameters their
analysis becomes practically impossible. The situation
comes more problematic in the case of a two-component
The infinite series of integral brackets containing Sonin po
nomials does not allow one to select explicitly the contrib
tions from different types of interactions in a system to va
ous dissipative coefficients. This frequently leads to
necessity to use various ungrounded approximations, suc
the Chapman-Cowling approximation@5# or the Kihara ap-
proximation@2#.

At the same time, in spite of some successes@8#, there is
yet no consistent mathematical theory for deriving the dis
pative coefficients in gases of quasiparticles. And, natura
the problem of distinguishability of contribution from inte
actions between identical quasiparticles and between di
ent subsystems has not been solved yet. This problem ha
own history. In practice, when analyzing particular physi
systems, many physicists use some model approximat
for collision integrals. The most popular one is the so-cal
BGK approximation@9#. In its simple form the BGK ap-
proximation leads sometimes to quite confusing results
04120
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gives us several relaxation mechanisms in the system,
therefore several characteristic times depending on mom
or energies of quasiparticles. The final observed quanti
should be obtained by averaging this these in some man
In particular problems the following question frequently a
pears: what must be averaged, i.e., the time or the rate~in-
verse time!? and how to obtain the real relaxation time, i.
by summation of the times or by summation of the rate
This uncertainty led to many confusing situations. For e
ample, for more than 15 years there were two different th
ries for the mobility of two-dimensional electron gas loca
ized over the free surface of liquid helium@10#. The first
theory @11# assumes the mobility to depend on the averag
characteristic time of electron-ripplon interaction~ripplons
are the quantized surface waves of liquid helium!. This
theory well describes the experimental data for small el
tron density@12#. Another theory@13# assumes the mobility
to be determined by the inverse averaged rate of the s
interaction. These theoretical results fit well experiments@14#
with large electron density. The problem of relationship b
tween these two results has naturally appeared. There w
similar confusion in the theory of dissipative processes
superfluids@15#. The analogous situation took place for som
time in the theory of thermal conductivity in solids@16#.

The aim of this paper is to present an alternative appro
for solution of the system of linearized kinetic equations
a two-component gas of quasiparticles with arbitrary sta
tics and dispersion law. The theory explicitly accounts for
types of interactions in the system. This allows one to a
lyze the contribution of interaction between identical pa
ticles to the relaxation of the whole system. I do not restr
myself to the frame of a particular system. So, the res
obtained here can be applied to any quantum system, wh
dissipative properties are determined by the processes
two-component gas of quasiparticles.

The paper is organized as follows. In Sec. II I formula
the problem mathematically and carry out the linearizat
procedure. Section III is devoted to the procedure of inv
son of the collision operator by the use of projection opera
method. In Sec. IV I derive the exact solution for charact
istic diffusion time and analyze all limiting cases. The cla
sical systems of Lorentz and Rayleigh gases and their g
eralization to the quasiparticle systems are considered in
V. In Sec. VI I consider the generalization of the Kiha
approximation to the quasiparticle quantum systems. T
outlines and conclusions are given in Sec. VII.

II. GENERAL EXPRESSIONS

Consider the stationary nonequilibrium state of a gase
mixture of quasiparticles of two species. The most intere
ing relaxation process in such a system is a diffusion@17#, so
I will concentrate on the diffusive processes.

One of the most essential advantages of the offered the
is the fact that it is correct for quantum gases with any s
tistics and any dispersion of quasiparticles. All main o
comes remain valid for both systems with nonzero chem
potential, and with chemical potential equal to zero~when
the number of quasiparticles is not conserved!. The con-
8-2
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RELAXATION TIME HIERARCHY IN A TWO - . . . PHYSICAL REVIEW E 66, 041208 ~2002!
structed theory does not meet principal difficulties in gen
alization to multicomponent systems~i.e., on systems with
number of active components exceeding two!.

The evolution of distribution functionsf k ~subscriptk
51,2 numbers the components of the mixture! can be de-
scribed by the following set of kinetic equations:

vk

] f k

]r
5 (

j 51,2
Ck j~ f k , f j ! ~k51,2!, ~1!

wherevk5]ek /]pk is the velocity of a quasiparticle of th
kth type, ek and pk are its energy and momentum, respe
tively; r is the coordinate; andCk j( f k , f j ) is the collision
integral, which is a functional of the distribution functions
mixture components 1 and 2. The particular form of the
collision integrals depends on the concrete physical probl
To find the diffusion coefficient let us consider the stationa
nonequilibrium state of the two components 1 and 2 of
mixture, in which the quasiparticles’ number densities are
functions of coordinater . In particular, for the gas of therma
excitations such situation can be realized by creation o
constant temperature gradient.

Under the considered conditions there are stationary
dients of partial pressure of components, which result in fl
of quasiparticles. This flow is determined by momentum c
rent density,

j k52 (
j 51,2

rk

r
dk j

]Pj

]r
~k51,2!, ~2!

whererk is the normal density of thekth component of the
system,r5r11r2 is the total density, anddk j is the matrix
of diffusion times. The partial pressure of quasiparticles
determined in the standard manner@5#,

Pj5
1

3E pj•vj f jdG j , ~3!

wheredG j is the measure in phase space. The density ofkth
component can be written in the universal form@15#,

rk52
1

3E pk
2f k8dGk , ~4!

where f k85] f k /]ek . Relations~2!–~4! are suitable for the
quasiparticles with arbitrary dispersion law, statistics, a
chemical potential~I mean both for zero chemical potenti
and for nonzero one!. Note that the definition of normal den
sity ~4! does not depend explicitly on such notations as m
or number density.

To exclude convective transport in a quasiparticle syst
i.e., to investigate only dissipative processes, here aft
shall consider the sum of partial pressures of different co
ponents of a mixture to be a constant, so putP5P11P2
5const. The analytical relation between the matrix eleme
of a matrix of diffusion timesdk j and the usual diffusion
coefficientD of a binary mixture can be obtained by a dire
comparison of expression~2! with the definition of diffusion
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coefficient. Thus, one can use the ordinary gas-dynamic d
nition of current density of thekth component of a mixture
~see, e.g., Ref.@5#!,

j k5E pkf kdGk . ~5!

It appears that for various quantum and classical phys
systems, the diffusion coefficient can be written in the m
general form@15,18#,

D5uD
2 tD , ~6!

whereuD is the characteristic velocity, whose analytic for
depends on the particular dispersion law and statistics
quasiparticles,tD is the characteristic diffusion time to b
determined.

According to the relations~2! and ~5!, for deriving the
diffusion coefficient~6! it is necessary to solve the system
kinetic equations~1!. Below, for definiteness, the diffusion in
a system with conserved number of quasiparticles~and,
therefore nonzero chemical potential! will be considered.
The calculation for the case with nonconserved number
quasiparticles can be carried out within a similar framewo

Since we are interested in the theory within linear
sponse approximation, let us assume the deviation of di
bution functionsf k from their local equilibrium valuesf k

(0) to
be small. So, put as usual,

f k5 f k
(0)1d f k , ud f ku! f k

(0) . ~7!

The small deviationd f k can be conveniently rewritten in th
form

d f k52
] f k

(0)

]ek
gk , ~8!

with unknown functionsgk . Linearizing the system of ki-
netic equations~1! we come to the system of linear integro
differential equations for unknown quantitiesgk , which de-
termine the degree of system perturbation,

vk

nk

]Pk

]r
5Ckkgk1Ck j~gk1gj ! ~k, j 51,2;kÞ j !. ~9!

Herenk is the number density of thekth component, andCk j
are the linearized collision operators for the collisions with
each component (k5 j ) and for the collisions between dif
ferent quasiparticles (kÞ j ). The acting of these operators o
an arbitrary function of momentum, sayj(pk, j ), is deter-
mined by the particular form of collision integrals appear
in Eq. ~1!. If we deal with the ordinary binary collision inte
gral with probability density functionWk j(pk•pj upk8•pj8) then
we obtain@19#
8-3
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Ck jj~pk, j !5E Wk j~pk•pj upk8•pj8! f j
(0)~pj !

3$16 f k
(0)~pk!%

21$16 f k
(0)~pk8!%$16 f j

(0)~pj8!%

3@j~pk, j8 !2j~pk, j !#dG jdGk8dG j8 ~10!

for kÞ j , and

Ckkj~pk!5E Wkk~pk•pupk8•p8! f k
(0)~p!$16 f k

(0)~pk!%
21

3$16 f k
(0)~pk8!%$16 f k

(0)~p8!%@j~pk8!

1j~p8!2j~pk!2j~p!#dGdGk8dG8 ~11!

for k5 j . The plus and minus signs in Eqs.~10! and ~11!
correspond to bosons and fermions, respectively.

Note that, in fact, our general approach allows us to
count in such a manner not only for binary collisions, but
a variety of more specific types of interaction, such as de
or conversion processes@20#, creation or annihilation of qua
siparticles, interaction with boundaries and point defects,

III. INVERSON OF THE COLLISION OPERATOR

According to relation~3!, the gradient of partial pressur
for quasiparticles with nonzero chemical potential can
written as

]Pk

]r
5nkS ]mk

]r D
T5const

, ~12!

wheremk is the chemical potential of thekth subsystem, and
T is the mixture temperature.

For further calculations it is convenient to present syst
~9! in the compact matrix form,

(
k51,2

uck&
]Pk

]r
5 Ĉug&, ~13!

where

uc1&5Uv1n1
21

0 L , uc2&5U 0

v2n2
21L , ug&5Ug1

g2
L , ~14!

are the two-component ket vectors, defined in an infinite H
bert space to be specified. The collisional operator matrĈ
can be conveniently written as a sum

Ĉ5 Ĵ1Ŝ, ~15!

where the operator matrix

Ĵ5S C12 C12

C21 C21
D ~16!

contains only the quantities corresponding to interactions
tween quasiparticles from different subsystems, and
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0 C22
D ~17!

corresponds to the relaxation inside each subsystem. To
fine completely the Hilbert space I am working in, let u
introduce the scalar product of two-dimensional bra vec
^zu5^z1(p1),z2(p2)u and ket vectorux&5(^xu)† in the fol-
lowing manner:

^zux&5 (
k51,2

~zkuxk!52 (
k51,2

E zk* xk

] f k
(0)

]ek
dGk , ~18!

where (zku and uxk) are the corresponding one-compone
bra vector and ket vector, respectively. It is easy to ver
that with such a choice of scalar product~18! the collision
operatorĈ becomes Hermitian.

System~13! is the system of nonuniform linear integra
equations. According to the general theory of integral eq
tions the sought solutionug& of system~13! must be orthogo-
nal to the solution of corresponding uniform equations,

Ĉuf1&50. ~19!

The normalized solution of Eq.~19! can be written in the
following form:

uf1&5
1

A3r
Up1

p2
L . ~20!

This vectoruf1& corresponds to the total momentum of o
two-component quasiparticle system. In general, Eq.~19! has
other solutions, corresponding to conservation of energy,
ticle number, etc. I account here only for the momentu
conservation law because the sought solution can dep
only on the quasiparticle momenta@see initial equations
~13!#. It is convenient to write the formal solution of Eq.~13!
so that the orthogonality condition

^guf1&50 ~21!

is contained explicitly in the solution. For this purpose let
define the projection operatorPn onto the subspace orthogo
nal to the vectoruf1&,

Pn512Pc , Pc5uf1&^f1u. ~22!

As a result, the formal solution of Eq.~13! can be written in
the form

ug&5Pn~ Ĉ21!Pn (
k51,2

uck&
]Pk

]r
. ~23!

Further, we must insert the solution~23! into the expression
for current density~5!, keeping in mind the relations~7! and
~8!. Comparing the obtained result with definition~2! for a
matrix of diffusion times, we come to

d115
r2

r1
tD , d125d215tD , d225

r1

r2
tD , ~24!
8-4
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where

tD52^f2uĈ21uf2& ~25!

is the characteristic diffusion time, and

uf2&5
1

A3rr1r2
U r2p1

2r1p2
L ~26!

is the characteristic diffusion vector, which is orthogonal
uf1&.

Now the problem is reduced to calculation of the mat
element~25!, which contains the inverse matrix operator d
termined by integral collision operators.

IV. EXACT AND LIMITING EXPRESSIONS
FOR THE DIFFUSION TIME

To derive an exact, analytical expression for the unkno
quantity ~25! it is necessary to introduce a full system
orthonormal two-dimensional vectorsufn& ~here n
51,2,3, . . . ) belonging to the infinite-dimensional Hilbe
space with a scalar product~18!. The concrete choice of a
system of basis vectors in many respects depends on co
nience of calculations within the framework of a concre
physical problem~see, e.g., Refs.@5# and @8#!. In our prob-
lem it is convenient to take vector~20! as the first of them,
and Eq.~26! as the second. The remaining vectors can
arbitrary~for example, such vectors can be built on the ba
of Sonin polynomials in the classical case@5#, or Akhiezer-
Aleksin-Khodusov polynomials@8# in quantum systems!, but
should satisfy the completeness and orthogonality co
tions,

(
m51

`

ufm&^fmu51, ^fmufn&5dmn . ~27!

In a constructed full system of vectors an exact express
for the diffusion time

tD52$~ Ĵ1Ŝ!21%22 ~28!

can be reduced to the visual analytical form allowing sim
physical interpretation and providing a possibility to car
out the in-depth qualitative analysis of the obtained resul
various limiting cases, corresponding to different mec
nisms of equilibration in the system of quasiparticles,

tD52H I 222 (
n,m53

`

I 2n@~I1S!21#nmI m2J 21

. ~29!

Here the square matricesI andS contain the following ma-
trix elements:

iIinm5I nm5^fnuĴufm&, ~30!

iSinm5I nm5^fnuŜufm&. ~31!
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To obtain the formal result~29! I have used the relations~19!
and ~27!.

The matrices~30! and ~31! are infinite dimensional and
nondiagonal. Therefore, the exact solution~29! does not al-
low one to obtain a closed analytical expression for the ch
acteristic diffusion time. However, it is necessary to emp
size that the result~29! contains explicitly not only the
quantities responsible for interaction between quasiparti
of different types, but also the matrix elements appropriate
collisions between the quasiparticles within each subsyst
It allows one to investigate various limiting cases, to fi
minimum and maximum values of diffusion time, to co
struct correct interpolation formulas and useful analyti
models, and to make calculations on computers for conc
physical systems.

To carry out the detailed analysis of the formal soluti
~29!, it is make explocit the vector basisufn& for n.2.
Namely, let us choose the remaining vectors in the follow
form:

uf2a11&5
1

N 1
(a) UF (a)~p1!

0 L , ~32!

uf2a12&5
1

N 2
(a) U 0

F (a)~p2!L , ~33!

wherea51,2,3, . . . , F (a)(pk) is the system of properly cho
sen orthogonal polynomials with the normN k

(a)

5@F (a)(pk)uF (a)(pk)#1/2, such that@F (a)(pk)upk#50 ~it is
clear that such polynomials cannot contain first degree
momentum!. Such a choice~32!, ~33! provides a possibility
to ‘‘separate’’ in some manner the components of the m
ture. The matrixJ1S takes now the form

J1S52S n1
(11) n12

(11) n1
(12) . . .

n21
(11) n2

(11) n21
(12) . . .

n1
(21) n12

(21) n1
(22) . . .

A A A �

D
2S v1

(11) 0 v1
(12) . . .

0 v2
(11) 0 . . .

v1
(21) 0 v1

(22) . . .

A A A �

D , ~34!

where I have introduced the following ‘‘higher’’ interactio
rates:

n jk
(ab)52

@F (a)~pj !uCjkuF (b)~pk!#

N j
(a)N k

(b)
~35!

and

n j
(ab)52

@F (a)~pj !uCjkuF (b)~pj !#

N j
(a)N j

(b)
~36!

for collisions of different quasiparticles, and
8-5
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ALEXANDER V. ZHUKOV PHYSICAL REVIEW E 66, 041208 ~2002!
v j
(ab)52

@F (a)~pj !uCj j uF (b)~pj !#

N j
(a)N j

(b)
~37!

corresponding to relaxation within each subsystem. The
resentation~34! helps us to understand the explicit structu
of the formal solution~29!. This provides a possibility to
study the most important limiting cases and to reveal th
physical significance.

So, in case of infinitely fast establishment of an equil
rium between quasiparticles of identical type~the so-called
complete control regime@14,21#!, when the strong inequali
ties

v j
(ab)@n j

(ab)n jk
(ab) ~ j ,k51,2! ~38!

take place, the second term in the brackets of general re
~29! vanishes and diffusion time~28! is given by the follow-
ing simple formula@19#:

tD
(cc)[tD

(min)52
1

I 22
5~t12

(0)211t21
(0)21!21, ~39!

where

tk j
(0)52^Ck j&k

21 ~k, j 51,2;kÞ j !. ~40!

Here and thereafter the brackets^•••& stand for a normalized
average defined by the relation

^A&k5
1

3rk
~pkuAupk! ~k51,2!. ~41!

According to the momentum conservation lawCk jupk)
52Cjkupj ) the relation between ‘‘basic’’ interaction rates
Eq. ~39! can be found as follows:

t12
(0)215

r2

r1
t21

(0)21. ~42!

Proceeding from Hermiticity and negativity of operatorsŜ

andĴ with the help of the well-known Cauchy-Bunyakovsk
inequality it is possible to show@19# that the following in-
equality is always valid:

tD>tD
(min) , ~43!

wheretD
(min) is determined by Eq.~39!.

In the opposite limiting case of extremely slow establis
ment of equilibrium between identical quasiparticles, i.
when

v j
(ab)!n j

(ab) ,n jk
(ab) ~ j ,k51,2!, ~44!

the second matrix in Eq.~34! can be neglected and the who
formula ~29! can be converted so that the diffusion timetD
runs up to its maximum value,

tD
(max)52^f2uĴ21uf2&. ~45!
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Comparing the main limiting results~39! and ~45! we come
to the following important conclusion: The main qualitativ
difference between expressions for diffusion time in case o
fast and slow relaxation inside each subsystem of a mix
consists in the method of averaging of operator matrices
responding to interaction betweendifferentsubsystems.

A very interesting situation can be realized when one,
first, subsystem equilibrates very slowly,C11→0, but relax-
ation in another one is extremely, fastC22→`, so that

v1
(ab)!n1

(ab) ,n12
(ab) , v2

(ab)@n2
(ab) ,n21

(ab) . ~46!

In this case the results~29! and ~34! can be converted a
follows:

tD'2^C12
21&12^C21&2

21 . ~47!

Let us pay attention to the principal difference between
first and second terms in relation~47!. Again, in the first term
we average the time, while in the second one we average
rate of interaction between quasiparticles of different spec
According to the Cauchy-Bunyakovsky inequality the ch
acteristic time^Cjk&

21 is always less than the timêCjk
21&

for any momentum dependence ofCjk . If the collision op-
eratorCjk does not depend on the quasiparticles mome
thentD[tD

(min) . If Cjk depends on momenta, then speed
equilibration of a system depends on how fast the equilib
tion between identical quasiparticles is@15,19#. Such a situ-
ation manifests itself in a phonon-impuriton system of sup
fluid mixtures of helium isotopes@22#, in which the
impuriton is the3He atom in superfluid4He, and in phonon
systems in solids@16#. There is a two-stage mechanism
relaxation in these systems. At the first stage quasiparti
of the second type interact only with those quasiparticles
the first type, whose momenta correspond to maximum
collision operatorC12. At the second stage establishment
an equilibrium in a system is determined by the interact
of quasiparticles of first type with each other. This occu
because the quasiparticles of the first type with minimumC12
prefer to interact with such quasiparticles within their su
system, which are already at equilibrium with the seco
subsystem.

The significance of the manner of averaging of collisi
operators can be illustrated in the simple example of lat
thermal conductivity in solids. The interaction rate betwe
phonon and scattering centernphi}Cphi ~say, a point defect
or an impurity! is proportional topph

4 ~the so-called Rayleigh

scattering!. So, the integral̂ Cphi
21&ph diverges at zero mo-

mentum and the corresponding relaxation time tends to z
This means that the nonequilibrium long wavelength phon
simply ‘‘does not see’’ an impurity. At the same time th
quantity ^Cphi&ph is finite and leads to a finite thermal cu
rent. So, the mechanism of equilibration of such system
be drawn as follows: at first all phonons come to quasieq
librium in their own subsystems, which corresponds to so
stationary flux of phonons, then they begin to scatter on
impurities and point defects. As can be seen from the res
8-6
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RELAXATION TIME HIERARCHY IN A TWO - . . . PHYSICAL REVIEW E 66, 041208 ~2002!
~29!, ~34!, ~39!, ~45!, and ~47!, analogous competition
mechanisms can occur in any two-component quasipar
system.

Calculation of̂ Cjk& j for particular physical systems doe
not meet any difficulties. However, to calculate^Cjk

21& j we

must inverse the collision operatorCjk , which is not a
straightforward operation. As a rule, it can be done by
placing Cjk with some characteristic rate of interaction b
tween quasiparticlesn jk5n jk(pk), and then by straightfor-
ward averaging of the valuen jk(pk)

21, which is simply a
multiplying operator. In the followingt section I consider th
most popular models in various problems associated w
two-component classical gases or with condensed m
whose transport properties are determined by the proce
in two-component quasiparticle systems.

V. THE RAYLEIGH AND LORENTZ MODELS FOR
TWO-COMPONENT GASEOUS MIXTURES

Any theory claiming for a solution of some complicate
special problems, should first of all agree necessarily w
some fundamental results in the most simple limiting cas
In the kinetic theory of classical gases the diffusion in
Lorentz gas~diffusion of a light, very rarefied component i
a gas of massive, slow particles! and a Rayleigh gas~diffu-
sion of massive particles with small concentration in a lig
gas! traditionally is considered.

Both classical models, i.e., the Rayleigh and Lore
gases correspond, in fact, to the limiting case~46!, but are
more restricted in particle characteristics. Let us start w
the Lorentz model. This is the mixture of a light compone
in very small concentration and a gas of massive, slow p
ticles ~buffer component!. Let the light component be th
first one. Let me briefly review the classical approach to
problem of diffusion in such a mixture@5,23#. The strong
inequality

n1 /n2!1 ~48!

was required for light particles to interact only with a ma
sive component, but not with one another. A large differen
in the masses of particles,
a
po

as
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m1 /m2!1, ~49!

ensured an elasticity of scattering of particles of a light co
ponent on massive particles and a large difference in ther
velocities of particles of different types. Thus, particles of t
massive component can be treated as fixed and describe
their equilibrium distribution function. With the purpose o
calculating a diffusion coefficient in such a system the stro
inequalities~48! and ~49! are usually used for simplification
of the initial kinetic equation, which can be reduced to t
so-called Boltzmann-Lorentz equation@5,23#. The conse-
quent solution of this equation gives an explicit express
for a diffusion coefficient.

Let us show that the classical results for diffusion in
Lorentz gas can be directly obtained from the general res
given by Eqs.~29! and~34!. The operations below have ce
tain value themselves as generalizations of Rayleigh
Lorentz models on quantum gases of quasiparticles. Su
generalization is not trivial because of the impossibility
introduce the mass and conserved number density for s
quasiparticles. So, we will formulate the problem in terms
normal densities. In this regard, for a Lorentz gas we repl
two strong inequalities with the following:

r1 /r2!1. ~50!

Then we can rewrite the vectoruf2&,

uf2&5
1

A3r1
Up1

0 L [Ux1

0 L . ~51!

An equilibrium in the massive component leads to the f
lowing simple expression for operator matrixĴ given, in
general, by Eq.~16!:

Ĵ5S C12 0

0 0D . ~52!

Then, using the explicit expression~34! we can reduce the
general result~29! to the following form:
tD
(L)5H ~x1uC12ux1!2

1

N 1
(a)N 1

(b) (
a,b51

`

@x1uC12uF (a)~p1!#@ i~f2a11uC12uf2b11!i21#ab@F (b)~p1!uC12ux1#J 21

. ~53!
the
of
b-
lli-
The vectorsuf2a11) represent a complete set of orthonorm
vector functions in the momentum space of the first com
nent. This allows us to rewrite relation~53! as follows:

tD
(L)52

1

3r1
~p1uC12

21up1![t12
(`) . ~54!

Further simplification can be achieved if we believe the m
sive particles to be fixed during a collision, so that
l
-

-

v5uv12v2u'uv1u. ~55!

This means that the differential cross section depends on
momenta of light particles only. Moreover, the momentum
a light particle can change only its direction but not an a
solute value. With these assumptions we can write the co
sion operatorC12 as

C1252uv1us tn2 , ~56!
8-7
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ALEXANDER V. ZHUKOV PHYSICAL REVIEW E 66, 041208 ~2002!
which is simply a multiplication operator and, therefore,
can be inversed without any difficulty. Here I introduced t
transport cross section@5#

s t5E ~12cosu12!ds, ~57!

where u12 is the scattering angle andds is the ordinary
differential cross section. As a result, using the relatio
~55!–~57! and defining the diffusion coefficient in a binar
gas in the usual manner@5,23#, we come to the classica
result

D12
(L)5

1

3nn1
E f 1

(0) v1

s t
dG1 . ~58!

The obtained expression~58! coincides with analogous for
mulas obtained in Refs.@5# and@23# by simplification of the
initial kinetic equation.

Note that for deriving the formula~58! in the frame of the
approach developed here it is enough to require the fu
ment of strong inequality~50! for normal densities of com
ponents of a mixture, absence of equilibrium in the first co
ponent, equilibrium in the second component, and elasti
of quasiparticle scattering.

Now I shall consider one more classical example, nam
a diffusion in the so-called Rayleigh gas@24#, that is, the
diffusion of a very rarefied, massive gas in the light buf
component with large concentration. In other words, we,
in the previous case, have a mixture of light and mass
components, but under opposite conditions. So we ass
the concentration of a massive component to be so small

r2 /r1!1. ~59!

Now I assume that the light component of a mixture is
ready in equilibrium, while the particles of the massive co
ponent almost do not interact with one another. In this li
iting case we can again use the result~53! with a replacement
of subscripts 1↔2. In this case, however, the relative velo
ity of particles from different components again is det
mined by the velocity of light particle. Therefore, the appr
priate collision operator does not depend on momenta
that in view of an orthogonality of vectors of selected ba
its nongiagonal elements vanish, i.e.,

@x2uC21uF (b)~p2!#50 ~b51,2, . . .!. ~60!

Thus, proceeding from the relation~53! with a replacement
of subscripts of components, we come to the relation

tD
(R)2152

1

3r2
~p2uC21up2![t21

(0)21
, ~61!

which determines the diffusion time in a weak solution o
massive component in an equilibrium light gas. Further, p
ceeding from a momentum conservation law, we obtain

tD
(R)2152

1

3r2
~p1uC12

21up1!5
n1n2

3nr2TE f 1
(0)p1

2v1s tdG1 .

~62!
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Expression~62! leads to the well-known relation for the dif
fusion coefficient of massive particles in an equilibrium lig
classical gas@2,5#. Let me remark that in Ref.@5# this result
was obtained by an indirect method with the use of the E
stein relation between the diffusion coefficient and mobili
The use of the method developed here has allowed to ob
the formula~62! without engaging artificial approaches, i.e
immediately from a general solution~29!,~34!. The devel-
oped approach allows to generalize the result~62!, as well as
Eq. ~58!, to quasiparticle systems with arbitrary dispersi
law and statistics, in particular, to such systems, in which
is impossible to define notation of a mass in its classi
sense.

VI. KIHARA APPROXIMATION

In the previous sections I considered only the most phy
cally interesting limiting cases. However, in practice, the f
lowing problem can appear: how to calculate some diss
tive coefficient more precisely in the intermediate case, i
when the considered limiting situations do not take occur.
course, the most straightforward way is to compute it n
merically using the formulas~29!–~34!. In that case we are
forced to restrict ourselves with some finite matrices in E
~29!. This is an analog of the Chapman-Cowling approxim
tion in classical gaseous mixtures. In 1949 Kihara@25# pro-
posed another approximation, which is, in fact, simpler th
Chapman-Cowling approximation. He simply proposed
neglect the nondiagonal integral brackets~see Ref. @2#!,
which is exact for Maxwell molecules. Unfortunately, th
approximation is unproven until now and it can be partia
justified only by experience in numerical calculations f
classical gases. In our theory such an approximation can
introduced by neglecting all the nondiagonal matrix eleme
in Eq. ~34!. After this procedure the inverse matrix (I
1S)21 takes the form

~I1S!2152S t1
(11) 0 0 . . .

0 t2
(11) 0 . . .

0 0 t1
(22) . . .

A A A �

D , ~63!

where I introduced the diagonal characteristic times

t j
(ab)5@n j

(ab)1v j
(ab)#21. ~64!

In view of Eqs.~63! and ~64! we can rewrite the result~29!
in the following form:

tD
21'2^f2uĈuf2&1

^f2uĈuf3&^f3uĈuf2&

^f3uĈuf3&

1
^f2uĈuf4&^f4uĈuf2&

^f4uĈuf4&
1•••. ~65!
8-8
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RELAXATION TIME HIERARCHY IN A TWO - . . . PHYSICAL REVIEW E 66, 041208 ~2002!
The series expansion~65! gives the correction to the limiting
result ~39!. In practice, we should estimate numerically
appropriate radius of convergence in series~65! and keep
necessary number of terms.

In general, it is clear that the Kihara approximation wor
well when the momentum dependence of collision opera
is weak enough. But sometimes series such as Eq.~65! have
infinite radius of convergence. This indicates simply that i
better to start with the opposite limiting formula~45! as a
zero order approximation.

VII. CONCLUSIONS

In the present work I present a general theory providin
possibility to investigate diffusion processes in a tw
component gas of quasiparticles with arbitrary statistics
dispersion. The obtained main equations of the theory
correct for systems both with conserved and nonconse
number of quasiparticles, which is mathematically expres
in nonequality or in equality of a chemical potential wi
zero, accordingly. The proposed theory can be generalize
the cases of classical and quantum gaseous mixtures
arbitrary number of components.

To solve the formulated problem I start with the system
kinetic equations~1! driving the evolution of correspondin
distribution functions of components of a mixture. After
standard procedure of a linearization~7!,~9! of a kinetic
problem, I have chosen the basis in infinite-dimensional tw
parameter Hilbert space with a scalar product~18! selected
so that the operator matrix of collision integrals~15!–~17!
becomes Hermitian. As is known, the inverse matrix of c
lision integrals does not exist because of the moments
collision integrals. However, by projecting on the nucleus
an integral operator of collisions it is possible to defi
somewhat inverse matrix. In the present work this proced
has been made by introducing the projection operator~22!
corresponding to conservation of total momentum of a q
siparticle system. As an outcome it allowed me to obtain
general expression~29! for characteristic time@see also Eq.
~34!#, determining speed of a diffusion relaxation in a sy
tem.

The obtained general result contains explicitly quantit
responsible for interactions between quasiparticles from
ferent components and between identical quasiparticle
allows to analyze the qualitative difference between mec
nisms of equilibration of a whole system in various limitin
-

04120
rs

s

a
-
d
re
ed
d

to
ith

f

-

-
of
f

re

-
e

-

s
f-
It

a-

cases. So, if the relaxation inside each component of a
tem is instantaneous, the diffusion time is determined by
inverse average of collision operator, describing interact
between quasiparticles of different types. In the opposite l
iting case, when the equilibrium in a system occurs over
infinite period of time, the diffusion time is equal to an a
erage of the inverse collision operator. The principal diff
ence between these two limiting results can be easily un
stood using an example of phonon thermal conductivity
solids. The thermal conductivity in this case is simply a d
fusion of phonons in a system of fixed ‘‘scatterers’’~impuri-
ties, boundaries, defects, etc.!. If the phonons did not come
yet to equilibrium with one another, the thermal conductiv
is determined by average of the inverse frequency of sca
ing of phonons on scatterers. In case of a long wavelen
phonon, such frequency is proportional to the fourth deg
of momentum~Rayleigh scattering!. Therefore, while aver-
aging, the integral simply diverges at zero momentum. T
is, the long wavelength phonon simply ‘‘does not feel’’ th
scatterer. On the contrary, in the case when the phon
come in equilibrium with one another, the magnitude of t
diffusion time appears to be finite, because now the f
quency is averaged, instead of time. This corresponds to
so-called two-stage mechanism of relaxation. At first,
equilibrium in a phonon gas appropriate to some station
phonon flux is established. Then phonons scatter on sca
ers. Just this process results in a finite heat flux.

The general results, obtained in the work, give corr
expressions for diffusion coefficients of a light gas in a m
sive one~Lorentz gas! ~58! and a massive gas in a light on
~Rayleigh gas! ~62!. Earlier, these classical results were o
tained only with use of artificial methods based on simpl
cation of the initial kinetic equation. Furthermore, these t
most popular model systems can be easily generalize
describe quasiparticle systems as well as classical gase
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